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Abstract

The closure of complexity classes is a delicate question and the answer varies depending
on the type of reduction considered. The closure of most classes under many-to-one (Karp)
reductions is clear, but the question becomes complicated when oracle (Cook) reductions are
allowed, and even more so when the oracle reductions are allowed to be randomized.

We first prove that BPPSZK ⊆ AM ∩ coAM, strengthening the previously known facts
that SZK is closed under NC1 truth-table reductions (Sahai and Vadhan, J. ACM ’03) and
that PSZK ⊆ AM ∩ coAM (Vadhan, as cited in Goldreich, ECCC ’05). Our proof relies on
showing that a certain class of real-valued functions that we call R-TFAM can be computed
using an AM protocol.

Then we investigate the power of randomized oracle reductions with relation to the notion
of program checking (Blum and Kannan, J. ACM ’95). We observe that a theorem of Beigel
implies that if any problem in TFNP such as Nash equilibrium is NP-hard under randomized
oracle reductions, then SAT is checkable.

We also observe that Beigel’s theorem can be extended to an average-case setting by relating
checking to the notion of program testing (Blum et al., JCSS ’93). From this, we derive that if
one-way functions can be based on NP-hardness via a randomized oracle reduction, then SAT is
checkable. By showing that NP has a non-uniform tester, we also show that if SAT has a worst-
case to average-case randomized oracle reduction, then SAT is checkable with a non-uniform
instance checker. These results hold even for adaptive randomized oracle reductions.
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1 Introduction

Studying the closure properties of complexity classes gives us insight into the power and behavior
of those classes. For example, efficient classes such as P,BPP are closed under efficient reductions
to themselves: P = PP and BPP = PBPP = BPPBPP. More powerful classes however behave in
more complicated ways. For example NP is not believed to be closed even under simple negation.

In this paper we study the class of randomized oracle (i.e., Cook) reductions: we say that a
language L has a randomized oracle reduction to L′, if there is an oracle algorithm A that, if given
input x and oracle access to O that decides L′ correctly on all inputs, then A correctly decides
all inputs x with overwhelming probability over the random coins of the reduction. A can use the
answers obtained from O in an arbitrary way (possibly even adaptively generating new queries to
O using the answers it obtained from previous queries).

We will be interested in the behavior of promise problems under randomized oracle reductions.
Promise problems (introduced by Even et al. [11], see also Goldreich [16]) are generalizations of
languages: a promise problem Π consists of a set of YES instances ΠY and a set of NO instances
ΠN , where ΠY ∩ ΠN = ∅. Languages are just promise problems where ΠN = ΠY . For many
basic complexity classes (notably BPP,AM,SZK) it is actually more natural to consider them
as classes of promise problems rather than classes of languages. This is because these classes are
“semantic” and assume that their inputs satisfy certain properties: for example, we assume that a
BPP algorithm accepts all inputs either with probability ≥ 2/3 or ≤ 1/3 (and never between 1/3
and 2/3), but we cannot check by looking at the algorithm only whether this promise holds for all
the inputs or not.

We ask whether randomized oracle reductions using an oracle deciding a promise problem Π
preserves certain properties of Π, such as complexity and checkability. Oracle reductions between
promise problems can behave counter-intuitively: as pointed out by Even et al. [11], there is a
(deterministic) oracle reduction A that can decide SAT using only an oracle which decides a
promise problem in NP ∩ co-NP. This is counter-intuitive, because if the oracle had decided a
language in NP∩ co-NP rather than a promise problem, then the existence of such a reduction A
would have implied NP ⊆ co-NP, contradicting the widely held conjecture that NP 6⊆ co-NP.

The reason that promise problems can behave in such strange ways under oracle reductions is
because the oracle reductions can ask queries that fail the promise, and somehow gain additional
power in doing so. Even et al. [11] show that if a reduction only asks the oracle on instances that
satisfy the promise (they call such reductions “smart”, which is arguably a misnomer since adding
this restriction makes the reduction less powerful), then indeed any promise problem decidable using
such a reduction with oracle access to a problem in NP ∩ co-NP must also be in NP ∩ co-NP.

Goldreich [16] takes a different approach: they propose a restriction on the structure of the
problem Π itself, and show that any language decidable using an arbitrary (though deterministic)
oracle reduction with access to such a restricted problem must also lie in NP ∩ co-NP.

We take this second approach in this paper, and show that if Π belongs to certain restricted
classes of promise problems with “nice properties”, then we are able to argue about either the
complexity or the checkability of languages that reduce to Π under randomized oracle reductions.

1.1 Complexity of real-valued functions verifiable in AM

Our first main theorem studies the power of randomized oracle reductions that use oracle access
to a class of real-valued function that we call R-TFAM. To understand R-TFAM, we begin by
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discussing the well-known class TFNP [26]. The class TFNP is the following class of search
problems: given input x, find y such that (x, y) satisfy a relation R, with the condition that R is
efficiently decidable and R is total : for every x, there exists y such that (x, y) ∈ R.

TFAM is a natural relaxation of TFNP (see Definition 2.5). We still require that R is total,
but now we allow R also to be just verifiable in AM (and not necessarily decidable in P). For
functions where in addition y ∈ R and y is unique up to some small error, we say that the function
is in R-TFAM (see Definition 3.1).

Although to the best of our knowledge this class of functions is not well-studied, many natural
problems can be decided given a R-TFAM oracle. For example, consider the problem of Entropy
Difference ED, which is complete for the class SZK [18]. An instance of this problem is a pair
of circuits (X1, X2) that we think of them as samplers: the distribution sampled by the circuit
X : {0, 1}m 7→ {0, 1}n is given by the output distribution X1(Um) on uniform input bits. We write
H(X) to denote the Shannon entropy of the distribution sampled by X. A YES instance of ED
satisfies H(X1) ≥ H(X2) + 1, while a NO instance satisfies H(X2) ≥ H(X1) + 1. It is clear that
being able to evaluate the function f(X1, X2) = H(X1)−H(X2) is sufficient to decide ED. It turns
out that the entropy of distributions sampled by circuits can be verified using an AM protocol
[14, 1] and therefore this function f is in the class R-TFAM.

Our main theorem is about the limits of randomized oracle reductions with oracle access to
languages in R-TFAM.

Theorem 1.1. BPPR-TFAM ⊆ AM ∩ coAM.

Application to SZK. It was previously known that SZK is closed under NC1 truth-table
reductions [32], and also that PSZK ⊆ AM ∩ coAM. The latter result was implicit in a result
due to Vadhan, as cited in Theorem 5.4 of [16], and we sketch the proof in Section A. Theorem
1.1 and the above discussion showing that the SZK-complete problem ED can be decided using an
R-TFAM oracle says that one can strengthen Vadhan’s result to the folloinwg.

Corollary 1.2. BPPSZK ⊆ AM ∩ coAM.

Proof technique Theorem 1.1 is proven by constructing an AM protocol to “emulate” the
behavior of a R-TFAM oracle. The challenge in doing so is to prove the soundness against cheating
provers. In particular, cheating provers can “adaptively” choose to answer queries in a way in order
to trick the verifier. For example, a cheating prover might answer queries x1, x2 with y1, y2, but if
the verifier asks the queries in reverse order x2, x1 then the prover might respond with y′2, y

′
1 where

y′2 6= y2. Since a real R-TFAM oracle would never behave in such a way, this kind of prover might
cause the verifier to make mistakes. This is especially problematic for randomized oracle reductions
because for each choice of the reduction’s random coins, the prover may cheat in a different way.
For the special case of R-TFAM oracles we are able to add some noise to the prover’s responses so
that they are somewhat “independent” of the prover’s choices, and this suffices to ensure that the
verifier either catches the prover if it tries to cheat, or otherwise the verifier’s emulation is correct.

1.2 Randomized oracle reductions, checkability, and testability

Although we are able to prove for the particular case of Theorem 1.1 that the verifier can catch the
prover cheating, we do not know how to catch this kind of cheating in general. Therefore in the
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following, we will assume that the cheating prover does not answer queries in such an adaptively
malicious way. Namely, the prover’s answers may be incorrect, but they are nevertheless a fixed
function of the queries. The interesting point is that even achieving soundness only against such a
restricted prover is tightly related to the notion of “checkability”.

Checkability was defined by Blum and Kannan [6] and intuitively guarantees the following: C
is a program checker for a problem Π if, when C is given an instance x and a program P , if P
decides Π correctly (for all inputs, not just x), then C(P, x) outputs the correct answer for x with
high probability, while if P decides x incorrectly then with high probability C(P, x) either outputs
“error” or finds the correct answer despite the incorrectness of P (x). Most checkers C require only
oracle access to P and not the code of P .

It was already observed by Blum and Kannan [6] that L is checkable (with C using only oracle
access to P ) if and only if L and L have interactive proofs where the prover answers only queries of
the form “x ∈ L?” and soundness is only required to hold against non-adaptively cheating provers
of the kind discussed above.

In the following, we show that the NP-hardness of certain problems under randomized oracle
reductions would imply that SAT is checkable. Whether or not SAT is checkable has been an
open problem since checkability was defined [6]. Our results establish connections between the
checkability of SAT and problems such as solving TFNP and inverting one-way functions, and give
evidence that proving these latter problems to be NP-hard under randomized oracle reductions will
be a challenging task as it would require resolving the open problem of whether SAT is checkable.
We credit Holenstein [24] with the observation that connecting the hardness of various problems
to the checkability of SAT is a meaningful statement.

1.2.1 An application of Beigel’s theorem

Theorem 1.3 (Beigel, as cited in [6]). Suppose Π is decidable by a randomized reduction A with
oracle access to Π′, and conversely Π′ is decidable by a randomized reduction A′ with oracle access
to Π. Then Π is checkable if and only if Π′ is checkable.

By definition TFNP relations are checkable: given an oracle O, check that (x,O(x)) ∈ R
indeed holds. Because the relation is total, O(x) can never claim that no solution exists.

TFNP contains important problems such as Nash equilibrium [30]. Megiddo and Papadimitriou
[26] observed that PTFNP ⊆ NP ∩ co-NP and therefore no TFNP oracle can be used to decide
SAT under deterministic oracle reductions unless NP = co-NP. Consequently, it is unlikely that
problems such as finding Nash equilibrium are NP-hard under deterministic oracle reductions.
Since TFNP is trivially reducible to NP, as a corollary of Theorem 1.3 we observe the following
about the hardness of TFNP:

Corollary 1.4. If SAT ∈ BPPTFNP, then SAT is checkable.

As discussed above, one consequence is that if finding Nash equilibrium can be used to solve
SAT via a randomized oracle reduction, then SAT is checkable. Corollary 1.4 can be interpreted
as an incomparable version of the theorem of Megiddo and Papadimitriou [26], where our version
handles randomized reductions but arrives at a different (weaker) conclusion.

3



1.2.2 Extending Beigel’s theorem to testability

So far we have considered worst-case to worst-case reductions, but equally interesting are worst-case
to average-case randomized oracle reductions. Such a reduction is an efficient oracle algorithm A
that is guaranteed to decide Π correctly (on all inputs) given oracle access to O that decides Π′ on
average over an input distribution D, namely when Prx←D[O(x) 6= Π(x)] ≤ 1/poly(n).

A notion of checkability for average-case problems also exists, which following Blum et al. [8]
we call testability: we say that C is a tester for Π′ with respect to the input distribution D if the
following holds. Whenever C is given a program P that correctly decides all x then C must also
decide all x. If C is given access to P such that Prx←D[P (x) 6= Π(x)] ≥ δ for some error parameter
δ, then C outputs “error” with high probability. See Definition 2.7 for a formal definition. We
remark that we allow C to run in time depending on the input length, while the related notion of
property testing [8, 19] typically considers testing algorithms that run in time depending only on
1/δ. Also, typically C will only use oracle access to P .

Our first observation is that Beigel’s theorem can be extended to encompass testability:

Theorem 1.5 (Extended Beigel’s theorem, informal). Suppose Π is decidable by a worst-case to
average-case randomized reduction A with oracle access to Π′, and conversely Π′ is decidable by a
(worst-case to worst-case) randomized reduction A′ with oracle access to Π. Then if Π′ is testable,
then both Π and Π′ are checkable.

Application to basing one-way functions on NP-hardness. One of the main goals of theo-
retical cryptography is to base the existence of cryptographic primitives on reasonable assumptions.
P 6= NP is a minimal assumption, and it would be ideal if one could construct one-way functions
from this assumption. Such a result might be proved by giving an efficient reduction A that uses
an oracle O that inverts a one-way function in order to decide SAT. However, it has been shown
in a series of works [12, 9, 4, 31] that such a hope is most likely false if A is non-adaptive, since it
would imply that NP ⊆ coAM.

We know less about whether or not one can base one-way functions on NP-hardness via an
adaptive reduction. There are certain cryptographic [22, 3, 27] and complexity-theoretic [13, 23, 5]
settings where having the adaptivity in the reduction buys more power, and so it is important to
understand whether adaptive reductions basing one-way functions on NP-hardness are possible.
Brassard [10] showed that one-way permutations cannot be based on NP-hardness unless NP ⊆
coAM. Akavia et al. [4] generalized the result of Brassard [10] to one-way functions whose range
is efficiently verifiable and whose preimage sizes are efficiently computable. Pass [31] showed
that if (general) one-way functions can be based on NP-hardness, then certain witness-hiding
protocols do not exist. However Haitner et al. [21] showed that it is unlikely that known witness-
hiding protocols are of the type studied by [31]. More recently, Haitner et al. [20] study the case
of stronger primitives such as collision-resistant hash functions and constant-round statistically
hiding commitments that can be broken by recursive collision finders.

Here we show that an adaptive reduction that uses a one-way function inverter to decide SAT
would imply that SAT is checkable. The observation is that a one-way function is testable (for a
suitable notion of testability for search problems), and therefore we can apply Theorem 1.5.

Corollary 1.6 (Joint with Holenstein). If there is a randomized oracle reduction that uses an
oracle O which inverts a one-way function in order to decide SAT, then SAT is checkable.
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We note that the proof that was joint with Holenstein was direct and did not go through the
formalism of testability that we develop here.

Application to worst-case to average-case reductions for SAT. Bogdanov and Trevisan
[9] prove that non-adaptive worst-case to average-case randomized reductions for NP imply that
NP ⊆ co-NP/ poly, which implies that PH = Σ3 and is considered implausible. We will consider
the same problem but allow adaptive reductions. Using a technique of [12] we observe that:

Theorem 1.7. For any L ∈ NP, L is testable by a non-uniform tester.

Theorem 4.3 states this formally. Combined with Theorem 1.5 this will imply the following.

Corollary 1.8. Suppose there is a (possibly adaptive) worst-case to average-case reduction that
uses an oracle O solving some NP language on average in order to decide SAT on all inputs.
Then SAT is checkable with a non-uniform checker.

1.3 Randomized vs. deterministic oracle reductions

As already noted throughout the introduction, if we restrict our attention to deterministic oracle
reductions then all of the results we prove are already known (and indeed in most cases stronger
conclusions hold). We remark that, although it is commonly conjectured that P = BPP [35, 7, 28,
25], the techniques used to prove derandomization under commonly held hardness assumptions do
not necessarily say that for some oracle O, it holds that PO = BPPO. Indeed, there are examples
of O where PO 6= BPPO. Therefore one cannot apply the general derandomization theorems above
to the previously known results about, say, PSZK and PTFNP to derive our results. We therefore
argue directly about BPPSZK, BPPTFNP, etc. without relying on derandomization assumptions.

2 Preliminaries

By x ← X for random variable X we mean that x is sampled according to the distribution of X.
For a set S, by US we mean the random variable with uniform distribution over S. By Un we mean
the random variable uniformly distributed over {0, 1}n.

As is standard convention, when we say an event occurs with negligible probability we mean
it occurs with probability n−ω(1) = neg(n) and if it occurs with overwhelming probability then it
occurs with probability 1− neg(n). Here, n is the input length. We call an algorithm efficient if it
runs in time poly(n).

We assume that the reader is familiar with the idea of promise problems [11] as well as the
standard complexity classes BPP,NP,PH,SZK,AM, etc., which we take to be classes of promise
problems (and not just languages).

For every promise problem Π = (ΠY ,ΠN ) we write Π(x) = 1 if x ∈ ΠY and Π(x) = 0 if x ∈ ΠN .
A language L is simply a promise problem (L,L), where L is the complement of L.

To extend promise decision problems to search problems, we work with promise relations.

Definition 2.1 (Promise relations). Let R = (RY , RN ) where RY ⊆ {0, 1}∗ × {0, 1}∗ and RN ⊆
{0, 1}∗ × {0, 1}∗ such that RY ∩ RN = ∅. We call R a promise relation and sometimes write for
shorthand (x, y) ∈ R to mean (x, y) ∈ RY . We say R is a standard relation if RY = RN .
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For any promise relation R = (RY , RN ), define R(x) = {y | (x, y) ∈ RY }. A relation R is total
if for every x, R(x) 6= ∅. Note that the decision problem for total relations is trivial, but the search
problem may still be hard.

In the following, we will consider ∅ to also denote a special symbol signifying the empty set, so
that search algorithms are allowed to output ∅ to mean that the algorithm cannot find a solution.
We will also abuse notation slightly and allow A(x) ∈ R(x) to be a true statement if R(x) is empty
and A(x) outputs the special symbol “∅”.

We say an algorithm A solves the language L (resp. the relation R) if for all x, it holds that
A(x) = L(x) (resp. A(x) ∈ R(x)). If the algorithm A is randomized, the latter should hold with
overwhelming probability (for all x’s).

Relations in NP and AM

Definition 2.2 (NP Relation). A standard relation R ⊆ {0, 1}∗×{0, 1}∗ is an NP relation if the
set R is accepted by an efficient algorithm, and for all (x, y) ∈ R, |y| ≤ poly(|x|).

Definition 2.3 (TFNP). A standard relation R ⊆ {0, 1}∗ × {0, 1}∗ is in the class TFNP if R is
an NP relation and R is total.

Definition 2.4 (AM relations). For a promise relation R = (RY , RN ), define the promise problem
MR = {MR

Y ,M
R
N} where MR

Y = {(x, y) | (x, y) ∈ RY } and MR
N = {(x, y) | (x, y) ∈ RN}. R is an

AM relation if MR ∈ AM, and also ∀(x, y) ∈ RY it holds that |y| ≤ poly(|x|).

Definition 2.5 (TFAM). A promise relation R = (RY , RN ) is in TFAM if R is a total relation
and also an AM relation.

Since our definition is for promise problems, instances (x, y) /∈ RY ∪RN can behave arbitrarily.
It follows immediately from the definitions that TFNP ⊆ TFAM.

When are AM relations interesting? In contrast to NP, not every AM decision problem has
an interesting search version. This is because an AM decision problem might not have well-defined
witnesses: for example, consider the standard Graph Non-Isomorphism (GNI) protocol, where given
(G1, G2) the verifier picks random bit b and sends a random permutation of Gb to the prover, who
must then respond with b. There is no fixed “witness” of the non-isomorphism, so the natural
AM relation of Graph Non-Isomorphism is trivial, ((G1, G2), y) ∈ RGNI iff (G1, G2) ∈ GNI, and the
value y is ignored. On the other hand, some interesting problems not known to be in NP (such
as Entropy Difference ED) do have interesting witnesses that are only known to be verifiable using
randomized protocols and not deterministically (for example, the entropy difference of a pair of
circuits, see Section 3).

Checkability

Definition 2.6 (Checkability). A relation R is checkable if there exists an efficient randomized
oracle algorithm A such that for all oracles O, the following holds.

• Completeness: suppose for all x it holds that O(x) ∈ R(x). Then for all x, AO(x) ∈ R(x)
with overwhelming probability.
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• Soundness: For any x such that O(x) /∈ R(x), AO(x) outputs with overwhelming probability
either some y ∈ R(x) or a special error symbol ⊥.

This definition coincides with the definition of [6] for checkability of promise problems Π if one
considers the relation (x, y) ∈ R iff Π(x) = y, where y ∈ {0, 1}.

It is known [6, 15] that for any k ≥ 2 and any language L, L is checkable if and only if both L
and L have an interactive proof system with k provers where the provers are asked only L queries.

An average case notion of checkability was defined by Blum et al. [8], which they called “program
testing”. (In the following we keep the convention that Dn is a distribution over {0, 1}n.)

Definition 2.7 (Testability). A relation R is δ-testable over the ensemble of distributions D =
{Dn} if there exists an efficient randomized oracle algorithm A such that for all oracles O the
following holds.

• Completeness: If O(x) ∈ R(x) for all x, then AO(1n) = 1 with overwhelming probability.

• Soundness: If Prx←Dn [O(x) ∈ R(x)] < δ, then AO(1n) outputs a special error symbol ⊥ with
overwhelming probability.

As for checkability, the definition of program testing for decision problems Π follows immediately
by considering the relation (x, y) ∈ R iff Π(x) = y.

Worst-case to average-case reductions

For let Dn be a distribution over {0, 1}n. We say that the ensemble of distributions D = {Dn} is
samplable if there is an efficient randomized algorithm S which the output of S(1n) is distributed
according to Dn. For ρ = ρ(n), we say that an oracle O ρ-solves the relation R over D if for every
n it holds that Prx←Dn [O(x) ∈ R(x)] ≥ ρ.

Definition 2.8 (Worst-case to average-case reductions.). Let ρ = ρ(n), and let D be an ensemble
of distributions. We say that the relation R reduces to ρ-solving the relation R′ over D if there
is an efficient randomized oracle algorithm A such that Pr[AO(x) ∈ R(x)] = 1 − neg(n) for every
x ∈ {0, 1}n whenever O ρ-solves the relation R′ over D.

Definition 2.9 (Worst-case to average-inverting reductions.). Let f = {fn : {0, 1}n → {0, 1}n} be a
family of functions. We say that the relation R reduces to ρ-inverting f if R reduces to ρ-solving the
relation Rf over the ensemble of distributions Df where Rf = {(y, x) : f(x) = y} and Df

n = f(Un).

Note that in both Definitions 2.8 and 2.9, the reduction is allowed to ask oracle queries y of
larger length |y| = poly(|x|) where x is the input to the reduction.

3 Real-valued Total Functions

3.1 Definitions and Preliminaries

We begin by defining the class of relations R-TFAM, which intuitively captures functions f :
{0, 1}∗ → R such that given (x, y), it is possible to verify using an AM protocol that |y − f(x)| is
small.
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Definition 3.1 (R-TFAM). A function f : {0, 1}∗ → R is in R-TFAM if for every ε ≥ 1/ poly(n),
the following relation R = (RY , RN ) is in AM:

1. (x, f(x)) ∈ RY .

2. (x, y) ∈ RN for all y such that |y − f(x)| > ε.

We let BPPR-TFAM denote the class of promise problems that are decidable by a randomized
oracle algorithm given oracle access to a real-valued function whose output is verifiable in AM,
formalized as follows.

Definition 3.2 (BPPR-TFAM). Π ∈ BPPR-TFAM if there exists an f ∈ R-TFAM, an oracle
algorithm A, and an ε = 1/ poly(n) such that for all oracles O satisfying ∀x, |f(x)−O(x)| ≤ ε, it
holds for all z ∈ ΠY ∪ΠN that AO(z) = Π(z) with overwhelming probability.

Our main interest in studying R-TFAM is its relationship to SZK. We will characterize SZK
by its complete problem: Entropy Difference ED. See e.g., [34] for an introduction and other
definitions of SZK.

Definition 3.3 (SZK and ED, [18]). A promise problem Π ∈ SZK if and only if it is Karp-
reducible to the following promise problem ED = (EDY ,EDN ). Instances of ED are pairs of circuits
(X1, X2) where each circuit X : {0, 1}m 7→ {0, 1}n is identified by its output distribution X(Um).
Let H(X) = H(X(Um)) denote the Shannon entropy of X(Um). Then:

1. (X1, X2) ∈ EDY iff H(X1) ≥ H(X2) + 1.

2. (X1, X2) ∈ EDN iff H(X2) ≥ H(X1) + 1.

We first recall that the entropy can be estimated using an AM protocol, whose proof we give
in the appendix.

Lemma 3.4 ([14, 2, 17]). For every ε > 1/ poly(n), there is an AM protocol that on input (X, y)
accepts if H(X) = y and rejects if |H(X)− y| > ε.

Proposition 3.5. BPPSZK ⊆ BPPR-TFAM

Proof. We show how to implement an ED oracle using a R-TFAM oracle for any ε ≤ 1/2. Consider
the function f(X1, X2) = H(X1) −H(X2). This function is in R-TFAM because by Lemma 3.4
the entropy of a circuit can be approximated using an AM protocol.

We claim that given any oracle O that solves (the search problem of) the relation R with up
to ε error, one can decide ED: given (X1, X2), query (X1, X2) from O to get y = O(X1, X2) and
accept iff y > 0. Since we are guaranteed that |(H(X1)−H(X2))− y| ≤ ε, it therefore holds that
if H(X1) > H(X2) + 1 then y > 1− ε and if H(X1) < H(X2)− 1 then y < −1 + ε. �

3.2 Power of R-TFAM

We now prove Theorem 1.1, namely BPPR-TFAM ⊆ AM ∩ coAM.
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Proof of Theorem 1.1. Fix any Π ∈ BPPR-TFAM, then by definition there exists f ∈ R-TFAM,
an efficient oracle algorithm A, and a parameter ε ≥ 1/ poly(n) satisfying Definition 3.2. Define
the (randomized) oracle Oε as follows. Oε(x) chooses a uniformly random αx

R← [0,+ε/3] which we
call the “randomizer” of the query x. We will round y as follows: let byeε/3 denote the the integer
multiple of ε/3 that is closest to y. Then the oracle takes y = f(x) + αx, and outputs z = byeε/3.
Note that it always holds that Oε ∈ [f(x)± ε], and so by the definition of A and Oε, it holds that

Pr
Oε,A

[AOε(z) = Π(z)] ≥ 1− n−ω(1) (1)

for all z ∈ ΠY ∪ ΠN (where Π(z) = 1 if z ∈ ΠY and Π(z) = 0 if z ∈ ΠN ). The reason is that one
can choose and fix the randomness of Oε first and then Inequality 1 holds by the definition of A.
In the following, let p(n) = poly(n) be an upper bound on the number of oracle queries made by
A and let ω denote random coins used to run A.

To prove that Π ∈ AM it suffices to show an AM protocol where either the verifier rejects or
(if the prover is honest) with high probability the verifier does not reject and the output of the
verifier is statistically close to the output of AOε . This way the verifier either catches the cheating
prover or gets a good emulation of AOε which she can use to take her final decision and choose to
accept or reject.

The intuition. The idea is that the verifier will select random coins ω for the execution of A
along with real numbers α1, . . . , αp(n) drawn uniformly at random from [0, ε/3] and send these to
the prover, and the prover will use ω to run A responding oracle queries according to Oε while
using αi as the randomizer for the i’th query xi. The prover sends back all the f(xi) to the verifier,
who checks for all i ∈ [p(n)] using f(xi) and αi that the responses bf(xi) +αieε/3 give a consistent
and accepting execution of the reduction. Furthermore, we assumed that f ∈ R-TFAM, so let R
be the corresponding relation guaranteed by Definition 3.1. Since R is an AM relation, so we will
also require that the prover give a proof that all f(xi)’s are correct.

Completeness of this strategy is clear because the honest prover can always prove that (x, f(x)) ∈
R, and so because each oracle query x is answered with the same distribution as AOε . Soundness
follows as well. The reason is that the only time the prover can bias the value byi + αie is when
(f(xi) + αi) − bf(xi) + αieε/3 ≈ ε/6 for some i, i.e., by slightly perturbing f(xi) + αi the prover
can cause it to be rounded either up or down. But it is easy to see that this bad situation is
unlikely, namely for each query, Prαi [(f(xi) + αi)− bf(xi) + αieε ∈ [ε/2± δ]] ≤ O(δ/ε). By taking
δ/ε � 1/p(n), where p(n) is the total number of queries, the verifier gets an emulation of the
reduction which is statistically close to an honest emulation and therefore the soundness of the
protocol follows from the definition of the reduction.

The AM protocol for Π. We define the following AM protocol (PA, VA) to decide the language
Π.

Protocol 3.6. Common input: instance z.

1. The verifier VA sends a random seed ω that will be used to execute A. VA also sends random
numbers α1, . . . , αp(n)

R← [0, ε/3].
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2. The prover PA emulates the execution of A using random coins ω, where the prover answers
the i’th oracle query xi with Oε(xi, αi) as defined above. The prover sends back to the verifier
the values (xi,Oε(xi, αi))’s.1

3. In parallel for all i ∈ [p(n)], the verifier engages the prover in the AM protocol that f(xi) = yi
with approximation error ε

np(n) . If any of these protocols reject, then reject.

4. The verifier checks for i = 1, . . . , p(n) that emulating A with the i’th query xi answered by
Oε(xi, αi) leads to A asking the i+ 1’st query xi+1, and so on, and accepts iff A accepts.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since BPPR-TFAM is closed under complement, proving that the above protocol decides Π
suffices to prove the theorem.

Completeness. For any z ∈ ΠY , the queries xi are answered with Oε(xi, αi). Namely, they
are answered according to Oε where the randomizers are chosen by the verifier, and therefore by
Inequality 1 the verifier accepts with overwhelming probability.

Soundness. Fix any z ∈ ΠN , and let P ′ be a possibly cheating prover. Suppose for some query
xi that P ′ returns a value yi such that |f(xi) − yi| > ε

np(n) . Then with overwhelming probability
one of the AM protocols in Step 3 will fail by the soundness condition of the R-TFAM relation,
and so VA will reject.

So let suppose that the strategy of P ′ is restricted to always claim some y as the value of f(x)
such that |f(x) − y| ≤ ε

np(n) . Now look at the oracle answer bf(x1) + α1eε to the first query x1

used in the emulation of the reduction. If it holds that f(xi) + αi − bf(xi) + αieε 6∈ [ε/6 ± δ] for
δ = ε

np(n) , then the value of bf(x1) +α1eε is robust to ±δ errors in f(x1), and so even if the prover
cheats in his claim about f(xi) by ±δ, he still can not change bf(x1) + α1eε. But since α1 was
chosen at random from [0, ε/3], we have:

Pr
αi

R←[0,ε/3]

[f(xi) + αi − bf(xi) + αieε ∈ [ε/6± δ]] ≤ 6δ/ε.

It means that with probability ≥ 1− 6δ/ε over the choice of αi
R← [0, ε/3] the prover does not have

any control over the first oracle answer used in the emulation of the reduction. The same argument
holds for the i’th query for any i ∈ [p(n)].

It follows by the union bound that the total statistical distance between the set of query/answer
pairs generated by AOε and the query/answer pairs generated by (P ′, VA) is bounded by at most 6

n .
Therefore, the probability that (P ′, VA) accepts is bounded by at most ≤ 6/n+ n−ω(1). Repeating
the overall protocol in parallel one can reduce this error to be negligible. �

Theorem 1.1 together with Proposition 3.5 yield Corollary 1.2, namely BPPSZK ⊆ AM ∩
coAM.

1In fact only sending xi’s suffices because Oε(xi, αi)’s can be computed by the verifier herself, but we denote
Oε(xi, αi) as part of the message for the sake of clarity.
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4 Reductions that Imply Checkability of SAT

We saw in Section 1.2.1 that a result of Beigel as cited in [6] (Theorem 1.3) along with the fact
that TFNP is trivially checkable implies the following theorem (see Definition 2.3 for a formal
definition of TFNP).

Theorem 4.1. For any relation R ∈ TFNP, if SAT can be reduced to (the search problem of) R
through a randomized reduction, then SAT is checkable.

4.1 Extending Beigel’s theorem to testability

We will prove Theorem 4.2 a variant of Theorem 1.3 for the case in which one of the reductions in
the hypothesis has the extra feature of being worst-case to average case (see Definition 2.8). From
this stronger assumption we conclude a stronger consequence as follows.

Theorem 4.2 (Restating Theorem 1.5, formally). Let δ = δ(n), let R and R′ be relations, and let
D be an ensemble of distributions. Suppose that solving R reduces to (1−δ)-solving R′ over D, and
also suppose that there is a randomized (worst-case to worst-case) reduction from R′ to R. Then if
R′ is δ-testable over D (resp. non-uniformly), then R and R′ are checkable (resp. non-uniformly).

Proof. (of Theorem 4.2) We first prove the theorem when there is no advice: t(n) = 0.
Let AR be the randomized oracle reduction from solving R to (1− δ)-solving R′ over D and let

` = poly(n) be an upper-bound on the length of the oracle queries of AR. Notice that, in particular,
AR is also a worst-case to worst-case reduction from R to R′. Let AR′ be the randomized (worst-case
to worst-case) reduction from R′ to R. By Theorem 1.3 and the fact that AR is also a worst-case
to worst-case reduction from R to R′, it follows that R is checkable if and only if R′ is checkable.
Therefore in the following it suffices to show that R is checkable.

Now suppose that TR′ is a δ-tester for R′. Given input x, the checker COR (x) does the following.

• For all i ≤ `(n), CR runs the δ-tester TR′ over the oracle AOR′ which is supposed to decide R′

with probability at least 1− δ over D` for the input length i. CR rejects if TR′ rejects.

• CR(x) runs the reduction AR on input x. For each query y that AR makes, CR runs AOR′(y)
to find the answer. CR outputs whatever AR outputs.

The completeness of CR is immediate, because if O is a perfect oracle for R′ then for each query
y, AOR′(y) ∈ R′(y) holds with overwhelming probability. In this case with overwhelming probability
TR′ will accept also and CR will output z ∈ R(x).

The soundness of CR holds by the soundness of TR′ and the definition of AR. Namely either
AOR′ (1 − δ)-solves R′ over Di for i ≤ `(n), or else TR′ rejects with overwhelming probability. In
the first case, by the correctness of AR, the checker CR will find a correct output ∈ R(x) with
overwhelming probability.

For non-uniform testers, it is clear that the above reduction still holds except one needs to
hardwire into CR the advice strings for all input lengths i ≤ `(n) that AOR′ might query. �

Theorem 4.3 (Formal statement of Theorem 1.7). Let R be any NP relation, δ = 1/ poly(n), and
Dn be any ensemble of samplable distributions. Then R can be δ-tested over Dn given

⌈
log 2

δ

⌉
=

O(log n) bits of advice. In particular the advice for length n inputs can be any sn such that sn ≤
Pry←Dn [R(y) 6= ∅] ≤ sn + δ/2.
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The intuition. Suppose that we are given sn ≈ Pry←Dn [R(y) 6= ∅] (the approximate fraction
of YES instances of R over Dn). If we sample enough number of points y1, . . . , yk ← Dn, then
by Chernoff we anticipate ≈ sn fraction of yi’s to satisfy R(yi) 6= ∅. As the first step the checker
for R simply verifies that sn ≈ |{i | O(yi) 6= ∅}| /k holds. This yet does not mean that with high
probability over y ← Dn, O(y) returns the right answer. But since R is an NP-relation we can
always make sure that if O(y) returns z 6= ∅, then (y, z) ∈ R. By enforcing this extra check over the
solutions zi = O(yi), the oracle O can be wrong only in “one direction”: to return ∅ for a query y
that R(y) 6= ∅. But if O does so significantly, then it will change its bias Pry←Dn [O(y) 6= ∅]� sn
and it can be detected. A very similar trick is used in [12, 9, 4]. The difference between our
setting and [12, 9, 4] is that they deal with provers (rather than oracles) that are stateful and
might cheat more intelligently by answering their queries depending on all the queries that they
are asked. That makes the job of [12, 9, 4] potentially harder, but they bypass this difficulty by
putting strong restrictions on the adaptivity of the reduction (which is not the case for our result).
Also [29, 33] uses this technique in another setting where the advice sn ≈ Pry←Dn [O(y) 6= ∅] is
used to construct a non-uniform reduction that (1 − 1/ poly(n))-solves R over Dn given access to
any oracle that solves R correctly only with probability ≥ 1/2 + n−1/3+ε.

Proof. (of Theorem 4.3) Let O be the oracle that is going to be tested for the relation R. The
checker algorithm AOR acts as follows.

1. Let k = n/δ2. For i ∈ [k] sample xi
R←{0, 1}n uniformly.

2. For i ∈ [k], ask xi from O to get yi = O(xi).

3. If for any i ∈ [k], it holds that yi 6= ∅ but (xi, yi) 6∈ R (which can be tested efficiently), then
halt and output ⊥.

4. If |{i : O(xi)∈R(x)}|
k < s− δ

6 , then halt and output ⊥, otherwise accept and output 1.

Completeness. If O(x) ∈ R(x) for all x ∈ {0, 1}n, then AR never halts in Step 3. We show that
the probability of halting in Step 4 is negligible. Let p = Prx←Dn [R(x) 6= ∅] and p′ = |{i : O(xi)∈R(x)}|

k

be the empirical estimate of p. By Chernoff, it holds that Prx1,...,xk
[|p′ − p| > ε] < 2e−2kε2 . Now

since it is guaranteed that s ≤ p, therefore it holds that

Pr[p′ < s− δ/6] ≤ Pr[p′ < p− δ/6] ≤ Pr[|p′ − p| > δ/6] < 2e−2k(δ/6)2 = 2e−n
2/18 = neg(n).

Soundness. Suppose Prx←Dn [O(x) 6∈ R(x)] ≥ δ. Then either it holds that Prx←Dn [R(x) =
∅ ∧ O(x) 6= ∅] ≥ δ/6 or it holds that Prx←Dn [R(x) 6= ∅ ∧ O(x) 6∈ R(x)] ≥ 5δ/6. We show that in
both cases AR halts with overwhelming probability.

If Prx←Dn [R(x) = ∅∧O(x) 6= ∅] ≥ δ/6 then with probability at least 1−(1−δ/6)k = 1−neg(n)
one of xi’s is sampled such that R(xi) = ∅ and O(xi) 6= ∅. In this case (xi,O(xi)) /∈ R and so AR
rejects in Step 3.

On the other hand if Prx←Dn [R(x) 6= ∅ ∧ O(x) 6∈ R(x)] ≥ 5δ/6, because p ≤ s+ δ/2 then

Pr
x←Dn

[O(x) ∈ R(x)] ≤ Pr
x←Dn

[R(x) 6= ∅ ∧ O(x) ∈ R(x)] ≤ Pr
x←Dn

[R(x) 6= ∅]− 5δ/6

= p− 5δ/6 ≤ s+ δ/2− 5δ/6 = s− δ/3.
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So for each i, Prxi←Dn [O(xi) ∈ R(xi)] ≤ s− δ/3, and thus by Chernoff it holds that

Pr[p′ ≥ s− δ/6] = Pr[p′ ≥ (s− δ/3) + δ/6] < 2e−2k(δ/6)2 = 2e−n
2/18 = neg(n).

But if p′ < s− δ/6, then AR halts in Step 4.
�

Worst-case to average-case reductions for NP

For definitions of worst-case to average-case reductions, see Definition 2.8.

Corollary 4.4 (Formal statement of Corollary 1.6). Let R be an NP-relation, let δ = 1/poly(n)
and let D be any efficiently samplable ensemble of distributions. If SAT reduces to (1− δ)-solving
R over D, then SAT has a non-uniform checker.

Corollary 4.5 (Formal statement of Corollary 1.8). Let δ = 1/ poly(n), and let f be an efficiently
computable family of functions. If SAT reduces to (1 − δ)-inverting f , then SAT is uniformly
checkable.

Proof. (of Corollaries 4.4 and 4.5) Since SAT is NP complete, there is a (worst-case to worst-case)
randomized reduction from the NP relation R of Theorem 4.3 to the relation SAT. Therefore
Corollary 4.4 follows from Theorem 4.2 and Theorem 4.3 immediately.

Corollary 4.5 also follows from Theorem 4.2 and Theorem 4.3 similarly, but this time we do not
need the advice because of the following. Even though Rf might not be a total relation, but it still
holds that

Pr
y←Df

i

[Rf (y) 6= ∅] = Pr
y←f(Ui)

[y is invertible] = 1.

Thus here we can use the constants si = 1 as the advice for all the query lengths i ≤ poly(n) that
reduction might ask and apply Theorem 4.3, eliminating the need for advice. �
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A Omitted Proofs

AM protocol for entropy

Proof. We give a simple proof for completeness. Recall the following facts. For two circuits Y1 and
Y2 sampling distributions, let their concatenation Y1Y2 be the joint circuit sampling the product
distribution. For all ε > 0, it is possible given any y > 0 to construct in poly(n, 1/ε) time a circuit
Zy such that |H(Zy)− y| < ε/100.

It is known that ED can be reformulated so that the gap between X1 and X2 is ε/2 rather than
1, and still the problem remains complete for SZK, so let us assume this. Since ED ∈ SZK ⊆ AM
[2, 17], therefore given input (X, y), the verifier can run in parallel the AM protocol for ED on
inputs (XZ1, Zy) and (Zy+1, X) and accept iff both executions accept. �

Proof of Proposition 3.5. We show how to implement an ED oracle using a R-TFAM oracle for
any ε ≤ 1/2. Consider the function f(X1, X2) = H(X1) −H(X2). This function is in R-TFAM
because by Lemma 3.4 the entropy of a circuit can be approximated using an AM protocol.

We claim that given any oracle O that solves (the search problem of) the relation R with up
to ε error, one can decide ED: given (X1, X2), query (X1, X2) from O to get y = O(X1, X2) and
accept iff y > 0. Since we are guaranteed that |(H(X1)−H(X2))− y| ≤ ε, it therefore holds that
if H(X1) > H(X2) + 1 then y > 1− ε and if H(X1) < H(X2)− 1 then y < −1 + ε. �

Proof sketch of Theorem 1.3

Let CΠ be a checker for Π. In order to check Π′, given the input x, the checker algorithm CΠ′ first
runs the reduction A′(x) and for any query like y that A′(x) wants to ask from its R oracle, CΠ′

does the following. CΠ′ runs the checker algorithm CΠ(y) over the “oracle” AO. If it leads to reject,
CΠ rejects as well, but if it did not reject and returned the output z, CΠ′ safely uses the answer z
for the query y and continues running the reduction A′(x). It is easy to see CΠ’s completeness and
soundness of follow from those of CΠ′ and the definition of reductions A and A′.

Proof sketch of PSZK ⊆ AM ∩ coAM

Vadhan (as cited by Goldreich [16]) proves the following:

Theorem A.1 (Vadhan, appears as Theorem 5.4 in [16]). Let Π = (ΠY ,ΠN ) be such that there exist
sets SY , SN satisfying SY ∪ SN = {0, 1}∗, ΠY ⊆ SY , ΠN ⊆ SN , (SY ,ΠN ) ∈ NP, (SN ,ΠY ) ∈ NP.
Then it holds that PΠ ⊆ NP ∩ co-NP.

This result can be interpreted the following way. Consider problems Π that “extend” to a TFNP
search problem in the following way: there exist disjoint SY , SN containing ΠY ,ΠN respectively
such that the relation

(x, bw) ∈ R ⇔ (b = 1 ∧ (x,w) ∈ SY ) ∨ (b = 0 ∧ (x,w) ∈ SN )

is in TFNP. This is equivalent to the hypothesis of Theorem A.1, and solving R immediately
implies solving Π. Now combined with the fact that PTFNP ⊆ NP∩ co-NP one obtains Vadhan’s
result.

This definition naturally generalizes to problems Π that “extend” to TFAM problems. As we
argued in Proposition 3.5, the SZK-complete problem entropy difference can be extended to the
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TFAM problem of computing f(X1, X2) = H(X1)−H(X2). For the same reason that PTFNP ⊆
NP ∩ co-NP, it also holds that PTFAM ⊆ AM ∩ coAM. Therefore, one can observe that

PSZK = PED ⊆ PTFAM ⊆ AM ∩ coAM
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